MPI as a programming model for High-Performance Reconfigurable Computers

ArchES Computing

Manuel Saldaña

SciNet SNUG – October 12, 2011
Toronto, Canada
Overview

- FPGAs and High-Performance Reconfigurable Computers

- What is ArchES-MPI?
 - Programming model
 - Message-Passing Engine
 - Functionality
 - Platforms
 - Use cases

- Future Work
High-Performance Reconfigurable Computer Model

- One or more interconnected Hosts
- One or more General Purpose Processors (X86)
- One or more FPGA Clusters
- One or more accelerators per FPGA
FPGAs in High-Performance Computing

- FPGAs as accelerators => Co-processors to CPUs
 - CRAY
 - SGI
 - SRC
 - DRC
 - Xtreme Data
 - Convey
 - ...

- The main obstacle has been the programming model!!
Challenges

- Some FPGA programming models try to automatically:
 - Extract parallelism
 - communication,
 - synchronization
 - load balance
 - algorithm itself

- Generate Hardware
 - signal timing,
 - low-level structures: registers, logic gates & LUTs
 - Physical placement of components
At ArchES Computing, we know both worlds and we leverage that knowledge to create High-performance Systems.
Why ArchES-MPI?

- Subset implementation of the MPI standard
 - API syntax and semantics
- Optimization of communications
- Widely used in the HPC world
 - distributed memory machines
- Provides portability
 - by adding layers of abstraction
- Isolates software from hardware changes
- Vast amount of documentation and examples available
Why ArchES-MPI?

- Ease of use: reduce the number of APIs
 - Inter-host communication (sockets, MPI)
 - X86-FPGA communication (vendor-specific)
 - X86-X86 Intra-host communication (pthreads, OpenMP)
 - For embedded processors (custom)

- Use one single API: MPI
 - ArchES-MPI is an implementation to achieve this
What is ArchES-MPI?

- Parallelism is explicitly stated
- Get the parallel algorithm right!
What is ArchES-MPI?

- Test and debug parallel implementation

Typical MPI cluster

- Communicating processes
- Computing Elements
What is ArchES-MPI?

- Gradually introduce accelerators, which are treated as peers to processors.

Communicating processes

Computing Elements

Hardware Accelerator

Hardware Accelerator

ArchES-MPI
Software-Hardware partitioning

- MPI as a common abstraction ("Language") between software and hardware experts
ArchES-MPI is software and hardware

- Adds software and hardware middle-ware layers
- Abstracts low-level communication details
- Makes applications more portable
The MPE provides the equivalent to MPI_Send and MPI_Recv to hardware engines.

The MPI FSM can be easily modeled from the MPI C code:

```c
main() {
    ...
    MPI_Recv()
    Compute()
    MPI_Send()
    ...
}
```

The network is connected to the MPE through a command FIFO and a data FIFO. Status and control signals such as busy, done, enable, etc., are also utilized.
void main (int argc, char **argv) {
 int x, my_rank, size;
 MPI_Init(…);
 MPI_Comm_rank(…,&my_rank);
 MPI_Comm_size(…, &size);
 if (my_rank == 0) {
 x = 1;
 MPI_Send(&x,1,MPI_INT,1,…);
 MPI_Recv(&x,1,MPI_INT,size-1,…);
 }
 else if (my_rank == size-1) {
 MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
 x++;
 MPI_Send(&x,1,MPI_INT,0,…);
 }
 else {
 MPI_Recv(&x,1,MPI_INT,my_rank-1,…);
 x++;
 MPI_Send(&x,1,MPI_INT,my_rank+1,…);
 }
 MPI_Finalize();
}
Supported MPI Functions

- Point-to-Point
 - Blocking
 - MPI_Send
 - MPI_Recv
 - Non-Blocking
 - MPI_Isend
 - MPI_Irecv
 - MPI_Wait/MPI_Test

- One-side-communications
 - MPI_Alloc_mem
 - MPI_Put/MPI_Get

- Collective Operations
 - MPI_Barrier
 - MPI_Bcast
 - MPI_Gather/MPI_Scatter
 - MPI_Reduce
 - MPI_Allreduce

- Miscellaneous
 - MPI_Init
 - MPI_Finalize
 - MPI_Comm_Rank
 - MPI_Comm_Size
 - MPI_Wtime
ArchES-MPI Framework

Co-Simulation
(Rapid prototyping and development)

Profiling
(Performance analysis, e.g. Jumpshot)

Partial Reconfiguration
(dynamic MPI process creation and Generic platforms)

MPI-to-HDL
(easier for sw developers)

NoC infrastructure and Portability
(e.g. FSB, QPI, PCIe, & Hardware support for Broadcast and Reduce)

Libraries and applications
(Third-party development, e.g., Xilinx, UT Austin, UofT)
Profiling with Jumpshot
(Daniel Nunes @ UofT)

- Well-known tool
- Extracts MPI protocol states from the MPE
- Profile just like in Software
- Works only for embedded processors and hardware engines
FSB-based platform

ArchES software and infrastructure brings this machine to life!
- Up to 15 FPGAs can be placed in the server divided across 3 stacks
- Very tight coupling between all FPGAs, system CPU and system memory
Use case (1/3)

University of Texas at Austin: FAST, A Processor Architecture Simulator
“Unlike physical world, computers grow in complexity faster than they get faster”
University of Toronto: A Multi-FPGA Architecture for Stochastic Restricted Boltzmann Machines (Neural Networks)

- BEE2 and BEE3 platforms
- 145X Speedup compared to single CPU
 - 3.13 billion connection-updates-per-second
- Embedded PowerPC processor
- DataFlow communication requirements
 - Simultaneous message reception from different sources
 - Full-duplex
 - Overlap communication and computation
The Hospital for Sick Children (Structural Biology and Biochemistry at UofT) – Molecular Dynamics

\[
U = \sum_i k_i \left[1 + \cos \left(n_i \varphi_i - \gamma_i \right) \right], n_i \neq 0 \\
U = \sum_i k_i (\theta_i - \theta_a)^2 \\
U_b = \sum_i k_i (r_i - r_a)^2 \\
V(r) = 4\varepsilon \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \\
U = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} q_i q_j \frac{1}{r_{ij} + \varepsilon} \\
O(n^2) \\
O(n)
\]

- MPMD – A Mix of different SW processes and different HW accelerators
- Software for processors is plain MPI on C++
- Nallatech FSB FPGA Accelerated Platform
Future directions

- QPI Modules
- PCIe Gen2-X8 or better
- Zynq devices (2 ARM cores + FPGA fabric)
- Embedded, Scientific and Data Centre applications will drive future developments
Questions?

Thank you!

ArchES Computing

msaldana@archescomputing.com
www.archescomputing.com